CENTRE FOR VETERINARY VACCINE INNOVATION AND MANUFACTURING (CVIM)

CVIM – Funding partners

 Biotechnology and Biological Sciences Research Council (BBSRC)

Funding the design and construction of the CVIM Building

Foreign, Commonwealth and Development Office (FCDO)

Funding the science projects

Gates Foundation

Funding scientific equipment, operational start-up costs and science projects

CVIM – Vision, Mission & Goals

- Vision: Working as a global partner to improve animal health and food security through the development of novel, affordable veterinary vaccines targeted at LMICs.
- Mission: To accelerate development and manufacturing of vaccines for neglected, zoonotic and emerging infectious diseases of livestock.
- Goals: This will be achieved by:
- Partnering with the animal health industry to bridge the gap between upstream R&D and down-stream product development for neglected and tropical livestock/animal diseases.
- Translating innovative science into suitable proof-of-concept for the development of novel vaccine platform technologies.
- Providing specialized expertise and facilities to produce cost-effective vaccines at pilot-scale for transfer to manufacturers.
- Knowledge exchange and know-how with partner LMICs.

Science focus

- Neglected and emerging diseases of livestock
- Zoonotic diseases
- Low- and middle-income countries (LMIC)
- Viruses, bacteria, parasites
- Also looking at vaccine platforms and modalities

Innovation and Manufacturing

Milestones

- Robust governance structures, independent of Pirbright
- Ongoing recruitment and training of staff
- Setting up GLP facilities, equipment
- Designing the GMP facility
- Initiating key scientific projects
- Initiated key partnerships

Independent governance

- Joint Oversight Committee
 - Chaired by Prof Helen McShane (University of Oxford)
 - Independent advisor
 - Funders
- Scientific Review Committee
 - Representatives from key areas:
 - Regulatory
 - LMIC (Africa and India)
 - GALVmed

Partnerships

- Technical partners:
 - Quantoom
 - Centre for Process Innovation
 - Institute for Protein Design
 - National Measurement Laboratory
- MCI Morocco
- KEMRI
- GALVmed
- Flexible arrangements with a range of partners

CVIM - Facilities

Two complementary facilities:

1. Refurbished Good Laboratory Practice (GLP) facility

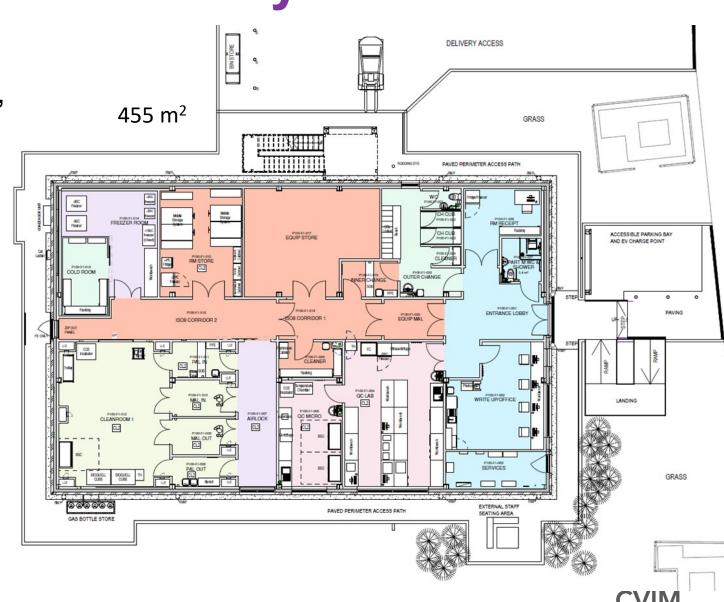
- Repurposed building ('A Block')
- R&D activities: establishing & evaluating vaccine platforms, & developing scalable processes
- CVIM Process Team 11 staff

2. New Good Manufacturing Practice (GMP) facility

- Building in progress, target completion date: Spring 2026
- Master seed & small-scale vaccine production (for clinical studies)

New GMP facility

Target completion date: Spring 2026


New GMP facility

Inside GMP containment area:

- Single GMP cleanroom (Grade C, ISO7) with isolator (Grade A)
- Cold room (+4°C; CNC) freezer room (-20,-80,-150°C)
- Storage room for consumables & spares (Grade D)
- Equipment storage for handling different platforms (Grade D)
- <200L single-use bioreactors

Outside GMP containment area:

 Receipt room, QC labs (micro & non-micro), office area

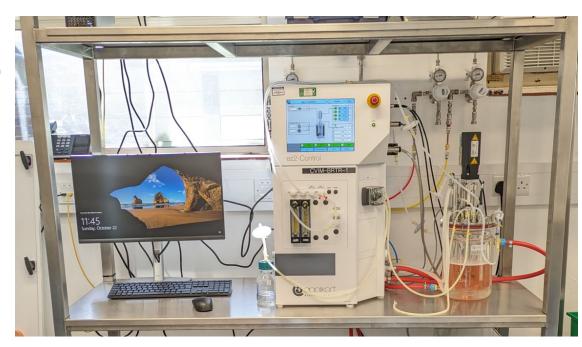
Innovation and Manufacturing

GLP Facility

- Refurbished to accommodate process scale up across different platforms
 - Installed specialist equipment & gas lines for bioreactor-based scale up.
- Spatially segregated projects by room to prevent contamination.

- Working to GLP to facilitate transition of documentation & processes to industrial partners &/or CVIM GMP facility
- Align consumables with regulatory requirements
 - Non-animal origin, GMP compliant

Upstream processing capability


Suspension cell culture of mammalian, insect & yeast cells

Scalable process - 1L, 3L & 15L glass autoclavable bioreactors

- Installed gas lines (O₂, N₂,
 CO₂ & compressed air)
- Operate bioreactors as a closed system using tube biowelder & biosealer

- Metabolite analyser inform feeding strategy
- Evaluating single-use bioreactor options

Downstream processing capability

Reduce costs by streamlining downstream processes

- Depth filtration to clarify crude lysates
- Tangential flow filtration (TFF) system diafiltration & concentration
 - Can be operated as a closed system with single-use options
 - Scalable
- End point filtration for sterility
- Sourcing chromatography system

RNA Capability

To support evaluation of RNA as a veterinary vaccine platform

Equipment

- Ntensify mini system IVT & single-step bead-based purification
- Up to 48 mRNA constructs at a 2mg scale, or a single at 100mg scale.
- Supported by Ignite+ encapsulation & QC equipment (DLS, Tapestation, Qubit, Nanodrop)

Platforms

mRNA & saRNA platforms

Established vaccine platforms

Multiple platforms over different LMIC disease areas:

ChAdOx/hAd5 (replication incompetent viral vector) – RVF

Yeast (Pichia pastoris) – IBV

Baculovirus (Tnao38 insect cells) – FMDV Virus-like particles

mRNA – PPR (model system), Marek's disease, FMDV, ASFV

Adenovirus vaccine platform

Aims: To support the development of a Rift Valley Fever (RVF) vaccine for use in livestock

Objectives:

1. To develop a scalable, cost-effective process for RVF vaccine production using the adenovirus platform

- 2. To evaluate the vaccine in target host species
- 3. To support process transfer to industry

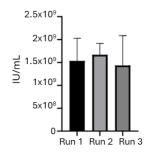
Evaluating two adenovirus systems:

- ChAdOx RVF Collaboration with University of Oxford
- hAd5 RVF Collaboration with GALVmed

Adenovirus vaccine platform

Cell selection

USP optimisation

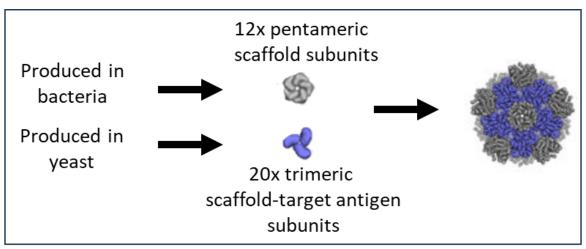

DSP optimisation

Product evaluation

Process transfer

- Cell growth
- Cell infection
- Virus production
- QC assays

- Gassing/impeller
- Seeding & infection Buffer exchange density
- MOI & DOI
- Feeding strategy
- Harvest method

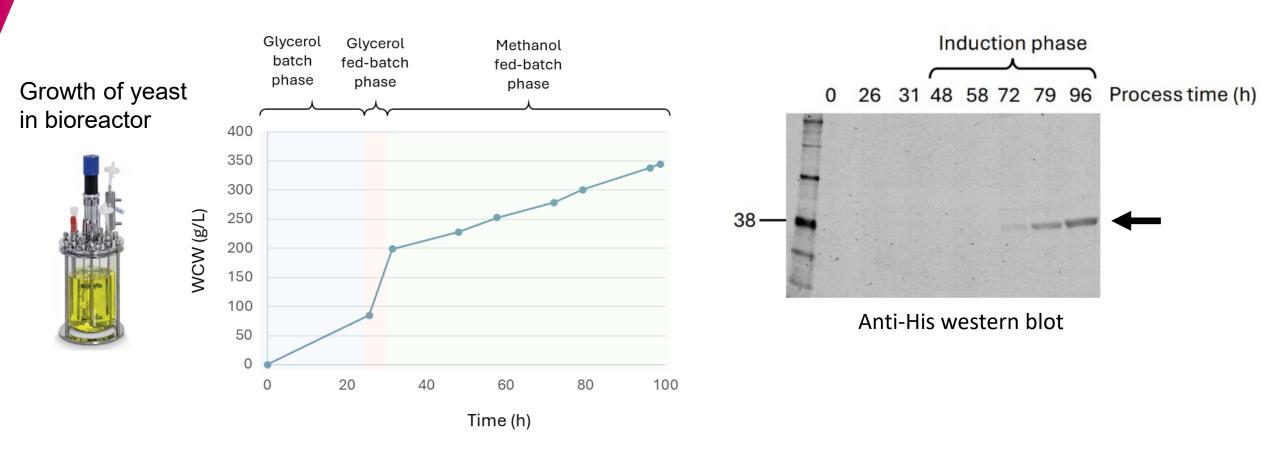

- Clarification
- Concentration
- End-point filtration
- Antigen expression
- Yield IU/mL
- P/IU ratio
- RCA assay
- Storage
- Genetic stability
- In vivo: Immunogenicity & dose escalation study
- VNT

- Data portfolio
- Cell & virus seeds
- CPP & CQA
- QC assays

Nanoparticle vaccine platform

Aims: To evaluate the application of a two-component, self-assembling nanoparticle vaccine platform for use in livestock.

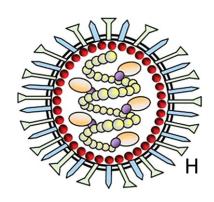
Objectives:


Adated from Bale et al Science 2016

- To develop a scalable, cost-effective process for producing target antigens fused to a nanoparticle scaffold subunit using the yeast (Pichia pastoris) platform. Target antigens: (1). Spike RBD of infectious bronchitis virus (IBV) of chickens and (2). H protein of peste des petits ruminants (PPR).
- 2. To evaluate nanoparticle vaccines in target host species.
- Collaboration with IPD, University of Washington.

Nanoparticle vaccine platform

Yeast expression of scaffold-IBV Spike RBD



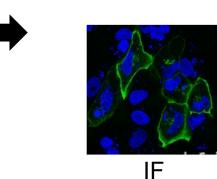
- Glycerol → methanol initiates target protein expression
- Scaffold-Spike Ag subunits secreted into medium

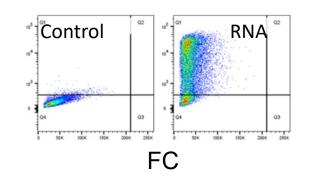
RNA vaccine platform

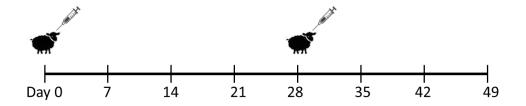
Proof-of-concept project

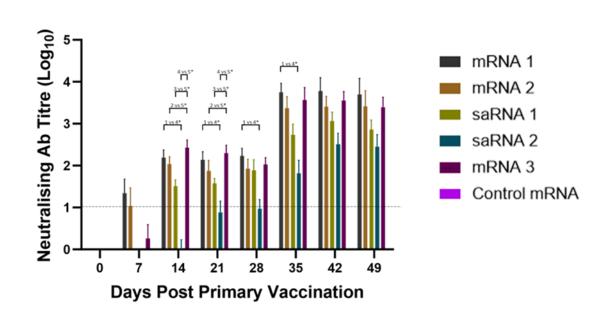
- Selected peste des petits ruminants (PPR) as the target disease to initially evaluate the application of RNA vaccines for use in livestock
 - > Single immunologically relevant target antigen: Hemaglutinin (H) glycoprotein
 - Available reagents to assess expression of target antigen.
 - Archived records of PPR studies.
 - Robust challenge model in target species.
 - Correlation of efficacy based on neutralising Ab titre.

Collaboration with Quantoom Biosciences.




In vitro work- assessment of antigen expression


mRNA/saRNA panel with different:


- Cap structures
- 5' & 3' UTRs
- Base analogues
- Localisation & secretion signals

 Protective(>10) nAb titres by 4 out of the 5 RNA vaccines on day 14 (pre-boost) and by all five on day 35 (post-boost)

RNA vaccine platform

Ambitious plans to evaluate:

- Antigen complexity
- Antigen expression
- Innate response
- Immunogenicity, dose, onset & duration of immunity
- Test different LNPs & alternative encapsidation/carrier strategies
- Safety/toxicity
- Compare with other vaccine platforms

5' m⁷G-ppp-N Antigen (A)_n 3'

5' m⁷G-ppp-N nsp1 nsp2 nsp3 nsp4

Lessons learnt

- Intellectual property landscape / freedom to operate
- Provenance of material
- Contracts take a long time
- Importance of the Target Product Profile
- Clear go/no go decision points
- Industrial partner identified

Summary of CVIM capabilities

- Assessment of multiple novel vaccine technologies
- Development of livestock vaccines for LMICs
- GMP Manufacturing scale-up
- Novel vaccine formulation
- Master Seed production
- Technology transfer
- Coaching and training opportunities

Acknowledgements

Bryan Charleston Science support Teams:

Kay Childs Ryan Waters

Ben Jackson Ana Coral

Kitty Harvey

Harvey Jupe QA Mai Uchida KEC

Katalin Foldes EMS

Liping Liu Finance

Astrid Maluta Grants

Daniel Bator-Brown HSBS

Philie Hollinghurst Procurement

Claire Allery

Stores

IT

