Association between major histocompatibility complex haplotypes and susceptibility of unvaccinated and vaccinated cattle to paratuberculosis.

07 Nov 2023
Garcia AA, Plain KM, Thomson PC, Thomas AJ, Davies CJ, Toribio JLML, Whittington RJ
Bovine Johne's disease (BJD) or paratuberculosis is caused by Mycobacterium avium spp. paratuberculosis (MAP) and is a worldwide problem among domestic and wild ruminants. While vaccines are available, natural differences in background immunity between breeds within species and between individuals within herds suggest that genetic differences may be able to be exploited in marker-assisted selection as an aid to disease control. The major histocompatibility complex (MHC) is an important component in immune recognition with considerable genetic variability. In this study, associations between the MHC and resistance to BJD were explored in dairy cattle across two herds in which some of the cattle had been vaccinated with Silirum® (n = 540 cows). A BJD susceptible animal was exposed to MAP and became infected, while a resistant animal was exposed but did not become infected. There are different ways to define both exposure and infection, with different levels of stringency, therefore many classifications of the same set of animals are possible and were included in the analysis. The polymorphic regions of major histocompatibility complex class I (MHC I) and class II (MHC II) genes were amplified from the genomic DNA by PCR and sequenced, targeting exons 2 and 3 of the classical and non-classical MHC I genes and exon 2 from the DRB3, DQA1, DQA2 + 3 and DQB MHC II genes. The frequencies of MHC I and MHC II haplotypes and alleles were determined in susceptible and resistant populations. In unvaccinated animals, seven MHC I haplotypes and seven MHC II haplotypes were associated with susceptibility while two MHC I and six MHC II haplotypes were associated with resistance (P < 0.05). In vaccinated animals, two MHC I and three MHC II haplotypes were associated with susceptibility, while one MHC I and two MHC II haplotypes were associated with resistance (P < 0.05). The alleles in significant haplotypes were also identified. Case definitions with higher stringency resulted in fewer animals being included in the analyses, but the power to detect an association was not reduced and there was an increase in strength and consistency of associations. Consistent use of stringent case definitions is likely to improve agreement in future association studies.