Cattle ticks and tick-borne diseases: a review of Uganda's situation

04 Jun 2021
Kasaija PD, Estrada-Peña A, Contreras M, Kirunda H and de la Fuente J

Herein we review the epidemiology of ticks and tick-borne diseases (TTBDs), their impact on livestock health and on the economy, control and associated challenges in Uganda. Ticks are leading vectors of economically important pathogens and are widespread in Uganda due to suitable climatic conditions. Besides the physical injury inflicted on the animal host, ticks transmit a number of pathogens that can cause morbidity and mortality of livestock if untreated, resulting in economic losses. Uganda suffers an aggregated annual loss (direct and indirect) of over USD 1.1 billion in the TTBDs complex. East Coast fever (ECF) caused by a protozoan haemoparasite, Theileria parva, is the most prevalent and economically important tick-borne disease (TBD) in Uganda and its vector, the brown ear tick (Rhipicephalus appendiculatus) widely distributed. Other prevalent TBDs in Uganda include anaplasmosis, babesiosis and heartwater. We highlight the role of agro-ecological zones (AEZs) and livestock management system in the distribution of TTBDs, citing warm and humid lowlands as being ideal habitats for ticks and endemic for TBDs. Control of TTBDs is a matter of great importance as far as animal health is concerned in Uganda. Indigenous cattle, which make up over 90% of the national herd are known to be more tolerant to TTBDs and most farms rely on endemic stability to TBDs for control. However, exotic cattle breeds are more capital intensive than indigenous breeds, but the increasing adoption of tick-susceptible exotic cattle breeds (especially dairy) in western and central Uganda demands intensive use of acaricides for tick control and prevention of TBDs. Such acaricide pressure has unfortunately led to selection of acaricide-resistant tick populations and the consequent acaricide resistance observed in the field. Vaccination against ECF, selective breeding for tick resistance and integrated tick control approaches that limit tick exposure, could be adopted to interrupt spread of acaricide resistance. We recommend increasing monitoring and surveillance for TTBDs and for emerging acaricide resistance, improved extension services and sensitization of farmers on tick control measures, appropriate acaricide use and the development and implementation of vaccines for the control of TTBDs as more sustainable and effective interventions. A tick control policy should be developed, taking into account variations of agro-ecological zones, farm circumstances and indigenous technical knowledge, and this should be incorporated into the overall animal health program.