Immersion vaccines against Yersinia ruckeri infection in rainbow trout: comparative effects of strain differences

15 Aug 2021
Yang H, Zhujin D, Marana MH, Dalsgaard I, Rzgar J, Heidi M, Asma KM, Per KW and Kurt B

The protective effects of autogenous and commercial ERM immersion vaccines (bacterins based on Yersinia ruckeri, serotype O1, biotypes 1 and 2) for rainbow trout (Oncorhynchus mykiss) were compared in order to evaluate whether the use of local pathogen strains for immunization can improve protection. In addition, the effect of the bacterin concentration was established for the commercial product. Following sublethal challenge of vaccinated and non-vaccinated control fish with live bacteria, we followed the bacterial count in the fish (gills, liver and spleen). The expression of genes encoding immune factors (IL-1β, IL-6, IL-8, IL-10, IFN-γ, MHCI, MHCII, CD4, CD8, TCRβ, IgM, IgT, IgD, cathelicidins 1 and 2, SAA and C3) and densities of immune cells in organs were recorded. Both vaccines conferred protection as judged from the reduced bacterial load in exposed fish. Innate immune genes were upregulated in all groups following bacterial challenge but significantly more in non-vaccinated naive fish in which densities of SAA-positive immune cells increased. Immunoglobulin genes were upregulated on day 5 post-challenge, and fish vaccinated with the high commercial bacterin dosage showed increased IgM levels by ELISA on day 14 post-challenge, reflecting that the vaccine dosage was correlated to protection. In conclusion, both vaccine types offered protection to rainbow trout when exposed to live Y. ruckeri and no significant difference between commercial and autogenous vaccines was established.