Recombinant Sendai Virus Vectors as Novel Vaccine Candidates Against Animal Viruses.

21 May 2025
Gómez Á, Reina R
Vaccination plays a pivotal role in the control and prevention of animal infectious diseases. However, no efficient and safe universal vaccines are currently registered for major pathogens such as influenza A virus, foot-and-mouth disease virus (FMDV), simian immunodeficiency virus (SIV), and small ruminant lentiviruses (SRLV). Here, we review the development of Sendai virus (SeV) vectors as a promising vaccine platform for animal diseases. Recombinant SeV vectors (rSeVv) possess several key features that make them highly suitable for developing vaccination strategies: (1) SeV has exclusively cytoplasmic replication cycle, therefore incapable of transforming host cells by integrating into the cellular genome, (2) rSeVv can accommodate large foreign gene/s inserts (~5 kb) with strong but adjustable transgene expression, (3) can be propagated to high titers in both embryonated chicken eggs and mammalian cell lines, (4) exhibits potent infectivity across a broad range of mammalian cells from different animals species, (5) undergo transient replication in the upper and lower respiratory tracts of non-natural hosts, (6) has not been associated with disease in pigs, non-humans primates, and small ruminants, ensuring a favorable safety profile, and (7) induce a robust innate and cellular immune responses. Preclinical and clinical studies using rSeVv-based vaccines against influenza A virus, FMDV, SIV, and SRLV have yielded promising results. Therefore, this review highlights the potential of rSeVv-based vaccine platforms as a valuable strategy for combating animal viruses.